

    
      
          
            
  
aiocometd

[image: PyPI package]
 [https://badge.fury.io/py/aiocometd][image: Documentation Status]
 [http://aiocometd.readthedocs.io/en/latest/?badge=latest][image: Build status]
 [https://travis-ci.org/robertmrk/aiocometd][image: Coverage]
 [https://coveralls.io/github/robertmrk/aiocometd][image: MIT license]
 [https://opensource.org/licenses/MIT]aiocometd is a CometD [https://cometd.org/] client built using asyncio [https://docs.python.org/3/library/asyncio.html], implementing the Bayeux [https://docs.cometd.org/current/reference/#_bayeux]
protocol.

CometD [https://cometd.org/] is a scalable WebSocket and HTTP based event and message routing bus.
CometD [https://cometd.org/] makes use of WebSocket and HTTP push technologies known as Comet [https://en.wikipedia.org/wiki/Comet_(programming)] to
provide low-latency data from the server to browsers and client applications.


Features


	
	Supported transports:

	
	long-polling


	websocket










	Automatic reconnection after network failures


	Extensions







Usage

import asyncio

from aiocometd import Client

async def chat():
    nickname = "John"

    # connect to the server
    async with Client("http://example.com/cometd") as client:

            # subscribe to channels to receive chat messages and
            # notifications about new members
            await client.subscribe("/chat/demo")
            await client.subscribe("/members/demo")

            # send initial message
            await client.publish("/chat/demo", {
                "user": nickname,
                "membership": "join",
                "chat": nickname + " has joined"
            })
            # add the user to the chat room's members
            await client.publish("/service/members", {
                "user": nickname,
                "room": "/chat/demo"
            })

            # listen for incoming messages
            async for message in client:
                if message["channel"] == "/chat/demo":
                    data = message["data"]
                    print(f"{data['user']}: {data['chat']}")

if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(chat())





For more detailed usage examples take a look at the
command line chat example [https://github.com/robertmrk/aiocometd/blob/develop/examples/chat.py] or for a more complex example with
a GUI check out the aiocometd-chat-demo [https://github.com/robertmrk/aiocometd-chat-demo].




Documentation

https://aiocometd.readthedocs.io/




Contents



	User’s guide
	Installation
	Install extras





	Quickstart
	Connecting

	Channels

	Subscriptions

	Receiving messages

	Sending messages





	Advanced Usage
	Connection types

	Extensions

	Network failures

	Prefetch and backpressure

	JSON encoder/decoder









	API Reference
	Client

	ConnectionType

	Extensions

	Exceptions





	Changelog
	0.4.5 (2019-03-14)

	0.4.4 (2019-02-26)

	0.4.3 (2019-02-12)

	0.4.2 (2019-01-15)

	0.4.1 (2019-01-04)

	0.4.0 (2019-01-04)

	0.3.1 (2018-06-15)

	0.3.0 (2018-05-04)

	0.2.3 (2018-04-24)

	0.2.2 (2018-04-24)

	0.2.1 (2018-04-21)

	0.2.0 (2018-04-21)














Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
User’s guide



	Installation
	Install extras





	Quickstart
	Connecting

	Channels

	Subscriptions

	Receiving messages

	Sending messages





	Advanced Usage
	Connection types

	Extensions

	Network failures

	Prefetch and backpressure

	JSON encoder/decoder













          

      

      

    

  

    
      
          
            
  
Installation

pip install aiocometd






Install extras

aiocometd defines several groups of optional requirements:


	tests for running unit tests


	docs for buidling the documentation


	examples for running the examples


	dev for creating a complete development enviroment




Any combination of these options can be specified during installation.

pip install aiocometd[tests,docs,examples,dev]











          

      

      

    

  

    
      
          
            
  
Quickstart

Client is the main interface of the library. It can be used to
to connect to CometD [https://cometd.org/] servers, and to send and receive messages.


Connecting

After creating a Client object the open() method
should be called to establish a connection with the server. The connection is
closed and the session is terminated by calling the close()
method.

client = Client("http://example.com/cometd")
await client.open()
# send and receive messsages...
await client.close()





Client objects can be also used as asynchronous context managers.

async with Client("http://example.com/cometd") as client:
    # send and receive messsages...








Channels

A channel is a string that looks like a URL path such as /foo/bar,
/meta/connect or /service/chat.

The Bayeux [https://docs.cometd.org/current/reference/#_bayeux] specification defines three types of channels: meta channels,
service channels and broadcast channels.

A channel that starts with /meta/ is a meta channel, a channel that
starts with /service/ is a service channel, and all other channels are
broadcast channels.


Meta channels

Meta channels provide to applications information about the Bayeux [https://docs.cometd.org/current/reference/#_bayeux] protocol,
they are handled by the client internally, the users of the client shouldn’t
send or receive messages from these channels.




Service channels

Applications create service channels, which are used in the case of
request/response style of communication between client and server
(as opposed to the publish/subscribe style of communication of broadcast
channels, see below). A server directly responds to messages sent to these
channels, the sent message is not broadcasted to any other client.




Broadcast channels

Applications also create broadcast channels, which have the semantic of a
messaging topic and are used in the case of the publish/subscribe style of
communication, where one sender wants to broadcast information to multiple
clients.






Subscriptions

In order to receive messages from broadcast channels
a client must subscribe to these channels first.

await client.subscribe("/chat/demo")





If you no longer want to receive messages from one of the channels you’re
subscribed to then you must unsubscribe from the channel.

await client.unsubscribe("/chat/demo")





The current set of subscriptions can be obtained from the
Client.subscriptions attribute.




Receiving messages

To receive messages broadcasted by the server after
subscribing to these channels the
receive() method should be used.

message = await client.receive()





The receive() method will wait until a message is received
or it will raise a TransportTimeoutError in case the
connection is lost with the server and the client can’t re-establish the
connection or a ServerError if the connection gets
closed by the server.

The client can also be used as an asynchronous iterator in a for loop to wait
for incoming messages.

async for message in client:
    # process message








Sending messages

To send messages to service or
broadcast channels the publish()
method can be used.

data = {"foo": "bar"}
response = await client.publish("/foo/bar", data)











          

      

      

    

  

    
      
          
            
  
Advanced Usage


Connection types

The Bayeux [https://docs.cometd.org/current/reference/#_bayeux] protocol used by CometD [https://cometd.org/] is a transport-independent protocol,  that
can be carried over HTTP or over WebSocket (or other transport protocols),
so that an application is not bound to a specific transport technology.

aiocometd supports the LONG_POLLING and
WEBSOCKET transports.

When a client connects to a CometD [https://cometd.org/] server, a so called handshake operation is
executed first using the default transport that all CometD [https://cometd.org/] servers should
support. Based on the types of transports that the server offers and what
the client supports, the client picks one of the transports that it will use
to communicate with the server.

By default, if the preferred connection types are not specified when the
Client is created, it will use the
WEBSOCKET transport if it’s supported by the server
or otherwise fall back to using LONG_POLLING.

If you prefer a different ordering then it can be specified when the
Client is created:

client = Client("http://example.com/cometd",
                connection_types=[ConnectionType.LONG_POLLING,
                                  ConnectionType.WEBSOCKET])





If there is only a single connection type that you would wan’t your client to
accept or fail if it’s not available on the server, then instead of a list
specify a single connection type:

client = Client("http://example.com/cometd",
                connection_types=ConnectionType.WEBSOCKET)








Extensions

Extensions allow the modification of a message just after receiving it but
before the rest of the message processing takes place, or just before sending
it. An extension normally adds fields to the message being sent or received in
the ext [https://docs.cometd.org/current/reference/#_bayeux_ext] object that the Bayeux [https://docs.cometd.org/current/reference/#_bayeux] protocol specification defines.
An extension is not a way to add business fields to a message, but rather a
way to process all messages, including the meta messages the Bayeux [https://docs.cometd.org/current/reference/#_bayeux] protocol
uses, and to extend the Bayeux [https://docs.cometd.org/current/reference/#_bayeux] protocol itself.

aiocometd provides abstract base classes for implementing custom extensions
using the Extension and AuthExtension classes.


Extension

To create a new extension use the Extension class as the base class:

class MyExtension(Extension):
    async def incoming(payload, headers=None):
        pass

    async def outgoing(payload, headers):
        pass





The incoming message payload, which is a list of messages, is first passed to
the incoming() method along with the received headers.
The incoming headers might or might not be empty, it depends on the type of
transport used, whether it receives headers for responses.

The outgoing payload along with the headers are passed to the
outgoing() method before sending.

Custom extension implementation can use these two methods to inspect or alter
the messages or headers. The list of extension objects that you would want to
use should be passed to the Client.

client = Client("http://example.com/cometd",
                extensions=[MyExtension()])








AuthExtension

The AuthExtension class, which is based on Extension, can
be used to implement authentication extensions.

For authentication schemes where the credentials are static it doesn’t
makes much sense to use AuthExtension instead of Extension.
However for schemes where the credentials can expire (like OAuth, JWT…)
authenticate() method can be reimplemented to update
those credentials. The authenticate() method is called
by the client after an authentication failure.

class MyAuthExtension(AuthExtension):
    async def incoming(payload, headers=None):
        pass

    async def outgoing(payload, headers):
        pass

    async def authenticate():
        # get new JWT





An auth extension should be passed to the client separately from the other
extensions.

client = Client("http://example.com/cometd",
                extensions=[MyExtension()]
                auth=MyAuthExtension())










Network failures

When a Client object is opened, it will try to maintain a continuous
connection in the background with the server. If any network failures happen
while waiting to receive() messages, the client will reconnect
to the server transparently, it will resubscribe to the subscribed channels,
and continue to wait for incoming messages.

To avoid waiting for a server which went offline permanently, a
connection_timeout can be passed to the Client, to limit how
many seconds the client object should wait before raising a
TransportTimeoutError if it can’t reconnect to the
server.

client = Client("http://example.com/cometd",
                connection_timeout=60)

try:
    message = await client.receive()
except TransportTimeoutError:
    print("Connection is lost with the server. "
          "Couldn't reconnect in 60 seconds.")





The defaul value is 10 seconds. If you pass None as the
connection_timeout value, then the client will keep on trying indefinitely.




Prefetch and backpressure

When a Client is opened it will start and maintain a connection in
the background with the server. It will start to fetch messages from the
server as soon as it’s connected, even before receive() is
called.

Firstly, prefetching messages has the advantage, that incoming messages will
wait in a buffer for users to consume them when receive()
is called, without any delay. Secondly, the client has no choice but to accept
incoming messages.

The Bayeux [https://docs.cometd.org/current/reference/#_bayeux] protocol is modelled very heavily around long-polling type HTTP
transports. Which requires from clients to send periodic requests to the server
to simulate a continuous connection, otherwise the server will terminate the
session. This makes it impossible to use backpressure, even with the type of
transports like WebSocket which would otherwise support it. So the connection
can not be suspended if the client can’t keep up with receiving the incoming
messages, or otherwise the session will be closed.

To avoid consuming all the available memory by the incoming messages, which are
not consumed yet, the number of prefetched messages can be limited with the
max_pending_count parameter of the Client. The default value is
100.

client = Client("http://example.com/cometd",
                max_pending_count=42)





The current number of messages waiting to be consumed can be obtained from the
Client.pending_count attribute.




JSON encoder/decoder

Besides the standard json [https://docs.python.org/3/library/json.html#module-json] module, many third party libraries offer
JSON serialization/deserilization functionality. To use a different library for
handling JSON data types, you can specify the callable to use for serialization
with the json_dumps and the callable for deserialization with the
json_loads parameters of the Client.

import ujson

client = Client("http://example.com/cometd",
                json_dumps=ujson.dumps,
                json_loads=ujson.loads)











          

      

      

    

  

    
      
          
            
  
API Reference


Client


	
class aiocometd.Client(url, connection_types=None, *, connection_timeout=10.0, ssl=None, max_pending_count=100, extensions=None, auth=None, json_dumps=<function dumps>, json_loads=<function loads>, loop=None)

	CometD client


	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – CometD service url


	connection_types (Union [https://docs.python.org/3/library/typing.html#typing.Union][ConnectionType, List [https://docs.python.org/3/library/typing.html#typing.List][ConnectionType], None]) – List of connection types in order of         preference, or a single connection type name. If None,         [WEBSOCKET,         LONG_POLLING] will be used as a default value.


	connection_timeout (Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) – The maximum amount of time to wait for the         transport to re-establish a connection with the server when the         connection fails.


	ssl (Union [https://docs.python.org/3/library/typing.html#typing.Union][SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], bool [https://docs.python.org/3/library/functions.html#bool], Fingerprint, None]) – SSL validation mode. None for default SSL check         (ssl.create_default_context() [https://docs.python.org/3/library/ssl.html#ssl.create_default_context] is used), False for skip SSL         certificate validation,         aiohttp.Fingerprint [https://aiohttp.readthedocs.io/en/stable/client_reference.html#aiohttp.Fingerprint] for fingerprint         validation, ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] for custom SSL certificate         validation.


	max_pending_count (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of messages to         prefetch from the server. If the number of prefetched messages reach         this size then the connection will be suspended, until messages are         consumed.         If it is less than or equal to zero, the count is infinite.


	extensions (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Extension]]) – List of protocol extension objects


	auth (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AuthExtension]) – An auth extension


	json_dumps (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Function for JSON serialization, the default is         json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]


	json_loads (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Function for JSON deserialization, the default is         json.loads() [https://docs.python.org/3/library/json.html#json.loads]


	loop (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractEventLoop]) – Event loop used to
schedule tasks. If loop is None then
asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] is used to get the default
event loop.









	
coroutine open(self)

	Establish a connection with the CometD server

This method works mostly the same way as the handshake method of
CometD clients in the reference implementations.


	Raises

	
	ClientError – If none of the connection types offered by the         server are supported


	ClientInvalidOperation – If the client is already open, or in         other words if it isn’t closed


	TransportError – If a network or transport related error occurs


	ServerError – If the handshake or the first connect request         gets rejected by the server.






	Return type

	None










	
coroutine close(self)

	Disconnect from the CometD server


	Return type

	None










	
coroutine publish(self, channel, data)

	Publish data to the given channel


	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel


	data (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Data to send to the server






	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]



	Returns

	Publish response



	Raises

	
	ClientInvalidOperation – If the client is closed


	TransportError – If a network or transport related error occurs


	ServerError – If the publish request gets rejected by the server













	
coroutine subscribe(self, channel)

	Subscribe to channel


	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel



	Raises

	
	ClientInvalidOperation – If the client is closed


	TransportError – If a network or transport related error occurs


	ServerError – If the subscribe request gets rejected by the         server






	Return type

	None










	
coroutine unsubscribe(self, channel)

	Unsubscribe from channel


	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel



	Raises

	
	ClientInvalidOperation – If the client is closed


	TransportError – If a network or transport related error occurs


	ServerError – If the unsubscribe request gets rejected by the         server






	Return type

	None










	
coroutine receive(self)

	Wait for incoming messages from the server


	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]



	Returns

	Incoming message



	Raises

	
	ClientInvalidOperation – If the client is closed, and has no         more pending incoming messages


	ServerError – If the client receives a confirmation message          which is not successful


	TransportTimeoutError – If the transport can’t re-establish         connection with the server in connection_timeout time.













	
closed

	Marks whether the client is open or closed


	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
subscriptions

	Set of subscribed channels


	Return type

	Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]










	
connection_type

	The current connection type in use if the client is open,
otherwise None


	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ConnectionType]










	
pending_count

	The number of pending incoming messages

Once open is called the client starts listening for messages
from the server. The incoming messages are retrieved and stored in an
internal queue until they get consumed by calling receive.


	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
has_pending_messages

	Marks whether the client has any pending incoming messages


	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]
















ConnectionType


	
class aiocometd.ConnectionType

	CometD Connection types


	
LONG_POLLING = 'long-polling'

	Long polling connection type






	
WEBSOCKET = 'websocket'

	Websocket connection type












Extensions


	
class aiocometd.Extension

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Defines operations supported by extensions


	
coroutine incoming(self, payload, headers=None)

	Process incoming payload and headers

Called just after a payload is received


	Parameters

	
	payload (List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – List of incoming messages


	headers (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Headers to send






	Return type

	None










	
coroutine outgoing(self, payload, headers)

	Process outgoing payload and headers

Called just before a payload is sent


	Parameters

	
	payload (List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – List of outgoing messages


	headers (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Headers to send






	Return type

	None














	
class aiocometd.AuthExtension

	Bases: aiocometd.extensions.Extension

Extension with support for authentication


	
coroutine authenticate(self)

	Called after a failed authentication attempt

For authentication schemes where the credentials are static it doesn’t
makes much sense to reimplement this function. However for schemes
where the credentials can expire (like OAuth, JWT…) this method can
be reimplemented to update those credentials


	Return type

	None
















Exceptions

Exception types

Exception hierarchy:

AiocometdException
    ClientError
        ClientInvalidOperation
    TransportError
        TransportInvalidOperation
        TransportTimeoutError
        TransportConnectionClosed
    ServerError






	
exception aiocometd.exceptions.AiocometdException

	Base exception type.

All exceptions of the package inherit from this class.






	
exception aiocometd.exceptions.ClientError

	ComtedD client side error






	
exception aiocometd.exceptions.ClientInvalidOperation

	The requested operation can’t be executed on the current state of the
client






	
exception aiocometd.exceptions.ServerError(message, response)

	CometD server side error

If the response contains an error field it gets parsed
according to the         specs [https://docs.cometd.org/current/reference/#_code_error_code]


	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Error description


	response (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Server response message









	
error

	Error field in the response


	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]










	
error_args

	Arguments part of the error [https://docs.cometd.org/current/reference/#_code_error_code],         message field


	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]










	
error_code

	Error code part of the error code part of the error [https://docs.cometd.org/current/reference/#_code_error_code],         message field


	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]










	
error_message

	Description part of the error [https://docs.cometd.org/current/reference/#_code_error_code],         message field


	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]










	
message

	Error description


	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
response

	Server response message


	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]














	
exception aiocometd.exceptions.TransportConnectionClosed

	The connection unexpectedly closed






	
exception aiocometd.exceptions.TransportError

	Error during the transportation of messages






	
exception aiocometd.exceptions.TransportInvalidOperation

	The requested operation can’t be executed on the current state of the
transport






	
exception aiocometd.exceptions.TransportTimeoutError

	Transport timeout











          

      

      

    

  

    
      
          
            
  
Changelog


0.4.5 (2019-03-14)


	Fix connection issues when used with reverse proxy servers with cookie based
sticky sessions







0.4.4 (2019-02-26)


	Refactor the websocket transport implementation to use a single connection
per client







0.4.3 (2019-02-12)


	Fix reconnection issue on Salesforce Streaming API







0.4.2 (2019-01-15)


	Fix the handling of invalid websocket transport responses


	Fix the handling of failed subscription responses







0.4.1 (2019-01-04)


	Add documentation links







0.4.0 (2019-01-04)


	Add type hints


	Add integration tests







0.3.1 (2018-06-15)


	Fix premature request timeout issue







0.3.0 (2018-05-04)


	Enable the usage of third party JSON libraries


	Fix detection and recovery from network failures







0.2.3 (2018-04-24)


	Fix RST rendering issues







0.2.2 (2018-04-24)


	Fix documentation typos


	Improve examples


	Reorganise documentation







0.2.1 (2018-04-21)


	Add PyPI badge to README







0.2.0 (2018-04-21)


	
	Supported transports:

	
	long-polling


	websocket










	Automatic reconnection after network failures


	Extensions










          

      

      

    

  

    
      
          
            

   Python Module Index


   
   a
   


   
     		 	

     		
       a	

     
       	[image: -]
       	
       aiocometd	
       

     
       	
       	   
       aiocometd.exceptions	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | E
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 


A


  	
      	aiocometd.exceptions (module)


      	AiocometdException


  

  	
      	authenticate() (aiocometd.AuthExtension method)


      	AuthExtension (class in aiocometd)


  





C


  	
      	Client (class in aiocometd)


      	ClientError


      	ClientInvalidOperation


  

  	
      	close() (aiocometd.Client method)


      	closed (aiocometd.Client attribute)


      	connection_type (aiocometd.Client attribute)


      	ConnectionType (class in aiocometd)


  





E


  	
      	error (aiocometd.exceptions.ServerError attribute)


      	error_args (aiocometd.exceptions.ServerError attribute)


  

  	
      	error_code (aiocometd.exceptions.ServerError attribute)


      	error_message (aiocometd.exceptions.ServerError attribute)


      	Extension (class in aiocometd)


  





H


  	
      	has_pending_messages (aiocometd.Client attribute)


  





I


  	
      	incoming() (aiocometd.Extension method)


  





L


  	
      	LONG_POLLING (aiocometd.ConnectionType attribute)


  





M


  	
      	message (aiocometd.exceptions.ServerError attribute)


  





O


  	
      	open() (aiocometd.Client method)


  

  	
      	outgoing() (aiocometd.Extension method)


  





P


  	
      	pending_count (aiocometd.Client attribute)


  

  	
      	publish() (aiocometd.Client method)


  





R


  	
      	receive() (aiocometd.Client method)


  

  	
      	response (aiocometd.exceptions.ServerError attribute)


  





S


  	
      	ServerError


  

  	
      	subscribe() (aiocometd.Client method)


      	subscriptions (aiocometd.Client attribute)


  





T


  	
      	TransportConnectionClosed


      	TransportError


  

  	
      	TransportInvalidOperation


      	TransportTimeoutError


  





U


  	
      	unsubscribe() (aiocometd.Client method)


  





W


  	
      	WEBSOCKET (aiocometd.ConnectionType attribute)


  







          

      

      

    

  

    
      
          
            
  

          

      

      

    

  _static/comment-bright.png





_static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/down-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          aiocometd
        


        		
          User’s guide
          
            		
              Installation
              
                		
                  Install extras
                


              


            


            		
              Quickstart
              
                		
                  Connecting
                


                		
                  Channels
                


                		
                  Subscriptions
                


                		
                  Receiving messages
                


                		
                  Sending messages
                


              


            


            		
              Advanced Usage
              
                		
                  Connection types
                


                		
                  Extensions
                


                		
                  Network failures
                


                		
                  Prefetch and backpressure
                


                		
                  JSON encoder/decoder
                


              


            


          


        


        		
          API Reference
          
            		
              Client
            


            		
              ConnectionType
            


            		
              Extensions
            


            		
              Exceptions
            


          


        


        		
          Changelog
          
            		
              0.4.5 (2019-03-14)
            


            		
              0.4.4 (2019-02-26)
            


            		
              0.4.3 (2019-02-12)
            


            		
              0.4.2 (2019-01-15)
            


            		
              0.4.1 (2019-01-04)
            


            		
              0.4.0 (2019-01-04)
            


            		
              0.3.1 (2018-06-15)
            


            		
              0.3.0 (2018-05-04)
            


            		
              0.2.3 (2018-04-24)
            


            		
              0.2.2 (2018-04-24)
            


            		
              0.2.1 (2018-04-21)
            


            		
              0.2.0 (2018-04-21)
            


          


        


      


    
  

_static/file.png





_static/minus.png





_static/down.png





_static/up-pressed.png





_static/up.png





_static/plus.png





